In this tutorial, we explore the design and implementation of an Advanced Neural Agent that combines classical neural network techniques with modern stability improvements. We build the network using Xavier initialization for balanced gradient flow and add stable activations like leaky ReLU, sigmoid, and tanh with clipping to avoid overflow. To stabilize training, we apply gradient clipping, momentum-inspired updates, and weight decay. The training loop includes mini-batches, early stopping, adaptive learning rates, and resets on instability, making the model robust for complex datasets. We also normalize targets, compute MSE, MAE, and R², and extend the agent with experience replay and exploratory decision-making, turning it into a flexible system for regression, classification-to-regression, and RL-style tasks. Check out the FULL CODES here.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification, make_regression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
We start by importing essential libraries like NumPy, Matplotlib, and scikit-learn, which we use for data generation, preprocessing, and splitting. We also suppress warnings to keep our workflow clean and focused. Check out the FULL CODES here.
class AdvancedNeuralAgent:
def __init__(self, input_size, hidden_layers=[64, 32], output_size=1, learning_rate=0.001):
"""Advanced AI Agent with stable training and decision making capabilities"""
self.lr = learning_rate
self.initial_lr = learning_rate
self.layers = []
self.memory = []
self.performance_history = []
self.epsilon = 1e-8
layer_sizes = [input_size] + hidden_layers + [output_size]
for i in range(len(layer_sizes) - 1):
fan_in, fan_out = layer_sizes[i], layer_sizes[i+1]
limit = np.sqrt(6.0 / (fan_in + fan_out))
layer = {
'weights': np.random.uniform(-limit, limit, (layer_sizes[i], layer_sizes[i+1])),
'bias': np.zeros((1, layer_sizes[i+1])),
'momentum_w': np.zeros((layer_sizes[i], layer_sizes[i+1])),
'momentum_b': np.zeros((1, layer_sizes[i+1]))
}
self.layers.append(layer)
def activation(self, x, func='relu'):
"""Stable activation functions with clipping"""
x = np.clip(x, -50, 50)
if func == 'relu':
return np.maximum(0, x)
elif func == 'sigmoid':
return 1 / (1 + np.exp(-x))
elif func == 'tanh':
return np.tanh(x)
elif func == 'leaky_relu':
return np.where(x > 0, x, x * 0.01)
elif func == 'linear':
return x
def activation_derivative(self, x, func='relu'):
"""Stable derivatives"""
x = np.clip(x, -50, 50)
if func == 'relu':
return (x > 0).astype(float)
elif func == 'sigmoid':
s = self.activation(x, 'sigmoid')
return s * (1 - s)
elif func == 'tanh':
return 1 - np.tanh(x)**2
elif func == 'leaky_relu':
return np.where(x > 0, 1, 0.01)
elif func == 'linear':
return np.ones_like(x)
def forward(self, X):
"""Forward pass with gradient clipping"""
self.activations = [X]
self.z_values = []
current_input = X
for i, layer in enumerate(self.layers):
z = np.dot(current_input, layer['weights']) + layer['bias']
z = np.clip(z, -50, 50)
self.z_values.append(z)
if i < len(self.layers) - 1:
a = self.activation(z, 'leaky_relu')
else:
a = self.activation(z, 'linear')
self.activations.append(a)
current_input = a
return current_input
def clip_gradients(self, gradients, max_norm=1.0):
"""Gradient clipping to prevent explosion"""
grad_norm = np.linalg.norm(gradients)
if grad_norm > max_norm:
gradients = gradients * (max_norm / (grad_norm + self.epsilon))
return gradients
def backward(self, X, y, output):
"""Stable backpropagation with gradient clipping"""
m = X.shape[0]
dz = (output - y.reshape(-1, 1)) / m
dz = np.clip(dz, -10, 10)
for i in reversed(range(len(self.layers))):
layer = self.layers[i]
dw = np.dot(self.activations[i].T, dz)
db = np.sum(dz, axis=0, keepdims=True)
dw = self.clip_gradients(dw, max_norm=1.0)
db = self.clip_gradients(db, max_norm=1.0)
momentum = 0.9
layer['momentum_w'] = momentum * layer['momentum_w'] + (1 - momentum) * dw
layer['momentum_b'] = momentum * layer['momentum_b'] + (1 - momentum) * db
weight_decay = 0.0001
layer['weights'] -= self.lr * (layer['momentum_w'] + weight_decay * layer['weights'])
layer['bias'] -= self.lr * layer['momentum_b']
if i > 0:
activation_func = 'leaky_relu' if i > 1 else 'leaky_relu'
dz = np.dot(dz, layer['weights'].T) * self.activation_derivative(
self.z_values[i-1], activation_func)
dz = np.clip(dz, -10, 10)
def adapt_learning_rate(self, epoch, performance_history):
"""Adaptive learning rate with performance-based adjustment"""
if epoch > 10:
recent_performance = performance_history[-10:]
if len(recent_performance) >= 5:
if recent_performance[-1] >= recent_performance[-5]:
self.lr = max(self.lr * 0.95, self.initial_lr * 0.01)
elif recent_performance[-1] < recent_performance[-5] * 0.98:
self.lr = min(self.lr * 1.02, self.initial_lr * 2)
def calculate_loss(self, y_true, y_pred):
"""Stable loss calculation"""
y_true = y_true.reshape(-1, 1)
y_pred = np.clip(y_pred, -1e6, 1e6)
mse = np.mean((y_true - y_pred) ** 2)
mae = np.mean(np.abs(y_true - y_pred))
if not np.isfinite(mse):
mse = 1e6
if not np.isfinite(mae):
mae = 1e6
return mse, mae
def store_experience(self, state, action, reward, next_state):
"""Experience replay for RL aspects"""
experience = {
'state': state,
'action': action,
'reward': reward,
'next_state': next_state,
'timestamp': len(self.memory)
}
self.memory.append(experience)
if len(self.memory) > 1000:
self.memory.pop(0)
def make_decision(self, X, exploration_rate=0.1):
"""Stable decision making"""
prediction = self.forward(X)
if np.random.random() < exploration_rate:
noise_scale = np.std(prediction) * 0.1 if np.std(prediction) > 0 else 0.1
noise = np.random.normal(0, noise_scale, prediction.shape)
prediction += noise
return np.clip(prediction, -1e6, 1e6)
def reset_if_unstable(self):
"""Reset network if training becomes unstable"""
print("
Resetting network due to instability...")
for i, layer in enumerate(self.layers):
fan_in, fan_out = layer['weights'].shape
limit = np.sqrt(6.0 / (fan_in + fan_out))
layer['weights'] = np.random.uniform(-limit, limit, (fan_in, fan_out))
layer['bias'] = np.zeros((1, fan_out))
layer['momentum_w'] = np.zeros((fan_in, fan_out))
layer['momentum_b'] = np.zeros((1, fan_out))
self.lr = self.initial_lr
def train(self, X, y, epochs=500, batch_size=32, validation_split=0.2, verbose=True):
"""Robust training with stability checks"""
y_mean, y_std = np.mean(y), np.std(y)
y_normalized = (y - y_mean) / (y_std + self.epsilon)
X_trn, X_val, y_trn, y_val = train_test_split(
X, y_normalized, test_size=validation_split, random_state=42)
best_val_loss = float('inf')
patience = 30
patience_counter = 0
train_losses, val_losses = [], []
reset_count = 0
for epoch in range(epochs):
if epoch > 0 and (not np.isfinite(train_losses[-1]) or train_losses[-1] > 1e6):
if reset_count < 2:
self.reset_if_unstable()
reset_count += 1
continue
else:
print("
Training unstable, stopping...")
break
indices = np.random.permutation(len(X_train))
X_train_shuffled = X_train[indices]
y_train_shuffled = y_train[indices]
epoch_loss = 0
batches = 0
for i in range(0, len(X_trn), batch_size):
batch_X = X_train_shuffled[i:i+batch_size]
batch_y = y_train_shuffled[i:i+batch_size]
if len(batch_X) == 0:
continue
output = self.forward(batch_X)
self.backward(batch_X, batch_y, output)
loss, _ = self.calculate_loss(batch_y, output)
epoch_loss += loss
batches += 1
avg_train_loss = epoch_loss / max(batches, 1)
val_output = self.forward(X_val)
val_loss, val_mae = self.calculate_loss(y_val, val_output)
train_losses.append(avg_train_loss)
val_losses.append(val_loss)
self.performance_history.append(val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
else:
patience_counter += 1
if patience_counter >= patience:
if verbose:
print(f"
Early stopping at epoch {epoch}")
break
if epoch > 0:
self.adapt_learning_rate(epoch, self.performance_history)
if verbose and (epoch % 50 == 0 or epoch < 10):
print(f"Epoch {epoch:3d}: Train Loss = {avg_train_loss:.4f}, "
f"Val Loss = {val_loss:.4f}, LR = {self.lr:.6f}")
self.y_mean, self.y_std = y_mean, y_std
return train_losses, val_losses
def predict(self, X):
"""Make predictions with denormalization"""
normalized_pred = self.forward(X)
if hasattr(self, 'y_mean') and hasattr(self, 'y_std'):
return normalized_pred * self.y_std + self.y_mean
return normalized_pred
def evaluate_performance(self, X, y):
"""Comprehensive performance evaluation"""
predictions = self.predict(X)
mse, mae = self.calculate_loss(y, predictions)
y_mean = np.mean(y)
ss_tot = np.sum((y - y_mean) ** 2)
ss_res = np.sum((y.reshape(-1, 1) - predictions) ** 2)
r2 = 1 - (ss_res / (ss_tot + self.epsilon))
return {
'mse': float(mse) if np.isfinite(mse) else float('inf'),
'mae': float(mae) if np.isfinite(mae) else float('inf'),
'r2': float(r2) if np.isfinite(r2) else -float('inf'),
'predictions': predictions.flatten()
}
def visualize_training(self, train_losses, val_losses):
"""Visualize training progress"""
plt.figure(figsize=(15, 5))
plt.subplot(1, 3, 1)
plt.plot(train_losses, label='Training Loss', alpha=0.8)
plt.plot(val_losses, label='Validation Loss', alpha=0.8)
plt.title('Training Progress')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.grid(True, alpha=0.3)
plt.yscale('log')
plt.subplot(1, 3, 2)
if len(self.performance_history) > 0:
plt.plot(self.performance_history)
plt.title('Performance History')
plt.xlabel('Epoch')
plt.ylabel('Validation Loss')
plt.grid(True, alpha=0.3)
plt.yscale('log')
plt.subplot(1, 3, 3)
if hasattr(self, 'lr_history'):
plt.plot(self.lr_history)
plt.title('Learning Rate Schedule')
plt.xlabel('Epoch')
plt.ylabel('Learning Rate')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
We implement an AdvancedNeuralAgent that we initialize with Xavier limits, leaky-ReLU activations, and momentum buffers to stabilize gradients and speed convergence. We train with mini-batches, gradient clipping, L2 weight decay, adaptive learning rates, early stopping, and automatic resets, and we track MSE/MAE/R² with normalization for reliable metrics. We also add experience replay and exploratory decisions for agent-like behavior, and we expose plotting utilities to visualize losses, validation history, and the LR schedule. Check out the FULL CODES here.
class AIAgentDemo:
"""Demo class for testing the AI Agent with various scenarios"""
def __init__(self):
self.agents = {}
self.results = {}
def generate_datasets(self):
"""Generate multiple test datasets"""
datasets = {}
X1, y1 = make_regression(n_samples=600, n_features=5, n_informative=4,
noise=0.1, random_state=42)
datasets['simple'] = (X1, y1, "Simple Regression")
X2, y2 = make_regression(n_samples=800, n_features=10, n_informative=8,
noise=0.2, random_state=123)
datasets['complex'] = (X2, y2, "Complex Regression")
X3, y3 = make_classification(n_samples=700, n_features=8, n_informative=6,
n_classes=2, random_state=456)
y3 = y3.astype(float) + np.random.normal(0, 0.1, len(y3))
datasets['classification'] = (X3, y3, "Classification-to-Regression")
return datasets
def test_agent_configuration(self, config_name, X, y, **agent_params):
"""Test agent with specific configuration"""
print(f"n
Testing {config_name}...")
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
default_params = {
'input_size': X_scaled.shape[1],
'hidden_layers': [32, 16],
'output_size': 1,
'learning_rate': 0.005
}
default_params.update(agent_params)
agent = AdvancedNeuralAgent(**default_params)
try:
train_losses, val_losses = agent.train(
X_scaled, y, epochs=150, batch_size=32, verbose=False)
X_trn, X_test, y_trn, y_test = train_test_split(
X_scaled, y, test_size=0.2, random_state=42)
performance = agent.evaluate_performance(X_test, y_test)
self.agents[config_name] = agent
self.results[config_name] = {
'performance': performance,
'train_losses': train_losses,
'val_losses': val_losses,
'data_shape': X_scaled.shape
}
print(f"
{config_name}: R²={performance['r2']:.3f}, MSE={performance['mse']:.3f}")
return True
except Exception as e:
print(f"
{config_name} failed: {str(e)[:50]}...")
return False
def run_comprehensive_demo(self):
"""Run comprehensive testing of the AI agent"""
print("
COMPREHENSIVE AI AGENT DEMO")
print("=" * 60)
datasets = self.generate_datasets()
configs = {
'lightweight': {'hidden_layers': [16, 8], 'learning_rate': 0.01},
'standard': {'hidden_layers': [32, 16], 'learning_rate': 0.005},
'deep': {'hidden_layers': [64, 32, 16], 'learning_rate': 0.003},
'wide': {'hidden_layers': [128, 64], 'learning_rate': 0.002}
}
success_count = 0
total_tests = len(datasets) * len(configs)
for dataset_name, (X, y, desc) in datasets.items():
print(f"n
Dataset: {desc} - Shape: {X.shape}")
print(f"Target range: [{np.min(y):.2f}, {np.max(y):.2f}]")
for config_name, config_params in configs.items():
test_name = f"{dataset_name}_{config_name}"
if self.test_agent_configuration(test_name, X, y, **config_params):
success_count += 1
print(f"n
OVERALL RESULTS: {success_count}/{total_tests} tests successful")
if self.results:
self.show_best_performers()
self.demonstrate_agent_intelligence()
def show_best_performers(self):
"""Show top performing configurations"""
print(f"n
TOP PERFORMERS:")
sorted_results = sorted(self.results.items(),
key=lambda x: x[1]['performance']['r2'],
reverse=True)
for i, (name, result) in enumerate(sorted_results[:5]):
perf = result['performance']
print(f"{i+1}. {name}: R²={perf['r2']:.3f}, MSE={perf['mse']:.3f}, MAE={perf['mae']:.3f}")
def demonstrate_agent_intelligence(self):
"""Demonstrate advanced AI capabilities"""
if not self.agents:
return
print(f"n
INTELLIGENCE DEMONSTRATION:")
best_name = max(self.results.keys(),
key=lambda x: self.results[x]['performance']['r2'])
best_agent = self.agents[best_name]
print(f"Using best agent: {best_name}")
print(f"
Memory capacity: {len(best_agent.memory)} experiences")
dummy_input = np.random.randn(3, best_agent.layers[0]['weights'].shape[0])
conservative_decisions = best_agent.make_decision(dummy_input, exploration_rate=0.0)
exploratory_decisions = best_agent.make_decision(dummy_input, exploration_rate=0.3)
print(f"
Decision making:")
print(f" Conservative: {conservative_decisions.flatten()[:3]}")
print(f" Exploratory: {exploratory_decisions.flatten()[:3]}")
if len(best_agent.performance_history) > 10:
initial_perf = np.mean(best_agent.performance_history[:5])
final_perf = np.mean(best_agent.performance_history[-5:])
improvement = ((initial_perf - final_perf) / initial_perf) * 100
print(f"
Learning improvement: {improvement:.1f}%")
total_params = sum(layer['weights'].size + layer['bias'].size
for layer in best_agent.layers)
print(f"
Network complexity: {total_params} parameters")
return best_agent
We orchestrate a comprehensive demo where we generate multiple datasets, sweep agent configurations, and train/evaluate each setup with standardized metrics (R², MSE, MAE). We log results, rank top performers, and then showcase “intelligence” by probing memory, exploration vs. exploitation decisions, learning improvement, and total parameter count. Check out the FULL CODES here.
def run_quick_demo():
"""Quick demo for immediate testing"""
print("
QUICK AI AGENT DEMO")
print("=" * 40)
X, y = make_regression(n_samples=500, n_features=6, noise=0.15, random_state=42)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
print(f"Dataset: {X_scaled.shape[0]} samples, {X_scaled.shape[1]} features")
agent = AdvancedNeuralAgent(
input_size=X_scaled.shape[1],
hidden_layers=[24, 12],
output_size=1,
learning_rate=0.008
)
print("Training agent...")
train_losses, val_losses = agent.train(X_scaled, y, epochs=100, verbose=False)
X_trn, X_test, y_trn, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
performance = agent.evaluate_performance(X_test, y_test)
print(f"n
RESULTS:")
print(f"R² Score: {performance['r2']:.3f}")
print(f"MSE: {performance['mse']:.3f}")
print(f"MAE: {performance['mae']:.3f}")
agent.visualize_training(train_losses, val_losses)
return agent
We add a quick demo utility that trains the agent on a simple regression dataset with six features, using a lightweight two-layer configuration. We normalize the data, train for 100 epochs, evaluate on a test split, and display R², MSE, and MAE before plotting training vs. validation loss curves for immediate feedback. Check out the FULL CODES here.
if __name__ == "__main__":
print("Choose demo type:")
print("1. Quick Demo (fast)")
print("2. Comprehensive Demo (detailed)")
demo = AIAgentDemo()
best_agent = demo.run_comprehensive_demo()
We define the main entry point so the script can be run directly. We display demo options, initialize AIAgentDemo, and by default execute the comprehensive demo, which trains multiple configurations across datasets, evaluates performance, and highlights the best agent.
In conclusion, we demonstrate how stability-aware engineering choices, ranging from weight decay regularization to dynamic learning rate scaling based on validation loss history, play a critical role in achieving consistent performance across diverse datasets. The agent is not just a static predictor; it actively adapts by storing past experiences, injecting controlled exploration into its decisions, and resetting its parameters when instability thresholds are reached. We further validate the design through comprehensive demos across lightweight, standard, deep, and wide configurations, benchmarking performance on simple, complex, and classification-derived regression datasets. The results highlight measurable improvements in R², MSE, and MAE, while visualization tools provide insight into learning dynamics and convergence behavior.
Check out the FULL CODES here. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.
The post How to Build a Robust Advanced Neural AI Agent with Stable Training, Adaptive Learning, and Intelligent Decision-Making? appeared first on MarkTechPost.